Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
Adv Healthc Mater ; : e2400819, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722289

ABSTRACT

Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impeded the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO2-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT). The Ag-Cu cores can convert endogenous H2O2 to hydroxyl radical (•OH), which could induce lipid peroxidation (LPO) and further degrade HSP70. The polydopamine (PDA)/glucose oxidase (GOx) shells were utilized as the NIR-II photothermal agent to generate low temperature, and the GOx could reduce the energy supplies and inhibit energy-dependent HSP70 expression. Furthermore, both the generation of •OH and GOx-mediated energy shortage can reduce HSP70 expression to sensitize mild PTT under 1064 nm laser, and in turn, GOx and laser self-amplify the catalytic reactions of APG NRs for more production of •OH. The multifunctional nanoreactors will provide more potential possibilities for the clinical employment of mild PTT and the advancement of tumor combination therapies. This article is protected by copyright. All rights reserved.

2.
Mater Today Bio ; 26: 101052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38628351

ABSTRACT

Advanced stages of breast cancer are frequently complicated by bone metastases, which cause significant cancer-related bone destruction and mortality. However, the early precise theranostics of bone metastasis remains a formidable challenge in clinical practice. Herein,a novel all-in-one nanotheranostic system (ABI NYs) combining NIR-II FL/PA dual-modal imaging with photothermal-immunity therapeutic functionalities in one component was designed to precisely localize bone metastasis microscopic lesions and achieve complete tumor ablation at an early stage. The surface modification of the nanosystem with ibandronate (IBN) facilitates both passive and active targeting, significantly improving the detection rate of bone metastasis and suppressing the bone resorption. Superior photothermal performance produces sufficient heat to kill tumor cells while stimulating the upregulation of heat shock proteins 70 (HSP70), which triggers the immunogenic cell death (ICD) effect and the anti-tumor immune response. These all-in-one nanosystems precisely demonstrated early lesion localization in bone metastases and total tumor ablation with a single integration via "one-component, multi-functions" technique. To sum up, ABI NYs, as novel biomineralizing nanosystems integrated with anti-tumor and bone repair, present a synergistic therapy strategy, providing insight into the theranostics of bone metastases and clinical research.

3.
Mater Today Bio ; 26: 101054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633865

ABSTRACT

The hypoxic tumor microenvironment (TME) of osteosarcoma (OS) is the Achilles' heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the hypoxia. Herein, we proposed a "reducing expenditure of O2 and broadening sources" dual-strategy and constructed ultrasmall IrO2@BSA-ATO nanogenerators (NGs) for decreasing the O2-consumption and elevating the O2-supply simultaneously. As O2 NGs, the intrinsic catalase (CAT) activity could precisely decompose the overexpressed H2O2 to produce O2 in situ, enabling exogenous O2 infusion. Moreover, the cell respiration inhibitor atovaquone (ATO) would be at the tumor sites, effectively inhibiting cell respiration and elevating oxygen content for endogenous O2 conservation. As a result, IrO2@BSA-ATO NGs systematically increase tumor oxygenation in dual ways and significantly enhance the antitumor efficacy of PDT. Moreover, the extraordinary photothermal conversion efficiency allows the implementation of precise photothermal therapy (PTT) under photoacoustic guidance. Upon a single laser irradiation, this synergistic PDT, PTT, and the following immunosuppression regulation performance of IrO2@BSA-ATO NGs achieved a superior tumor cooperative eradicating capability both in vitro and in vivo. Taken together, this study proposes an innovative dual-strategy to address the serious hypoxia problem, and this microenvironment-regulable IrO2@BSA-ATO NGs as a multifunctional theranostics platform shows great potential for OS therapy.

4.
Adv Sci (Weinh) ; : e2401046, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666450

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by excessive proliferation of rheumatoid arthritis synovial fibroblasts (RASFs) and accumulation of inflammatory cytokines. Exploring the suppression of RASFs and modulation of the RA microenvironment is considered a comprehensive strategy for RA. In this work, specifically activated nanoagents (MAHI NGs) based on the hypoxic and weakly acidic RA microenvironment are developed to achieve a second near-infrared fluorescence (NIR-II FL)/photoacoustic (PA) dual-model imaging-guided multi-treatment. Due to optimal size, the MAHI NGs passively accumulate in the diseased joint region and undergo rapid responsive degradation, precisely releasing functionalized components: endogenous melanin-nanoparticles (MNPs), hydrogen gas (H2), and indocyanine green (ICG). The released MNPs play a crucial role in ablating RASFs within the RA microenvironment through photothermal therapy (PTT) guided by accurate PA imaging. However, the regional hyperthermia generated by PTT may exacerbate reactive oxygen species (ROS) production and inflammatory response following cell lysis. Remarkably, under the acidic microenvironment, the controlled release of H2 exhibits precise synergistic antioxidant and anti-inflammatory effects with MNPs. Moreover, the ICG, the second near-infrared dye currently approved for clinical use, possesses excellent NIR-II FL imaging properties that facilitate the diagnosis of deep tissue diseases and provide the right time-point for PTT.

5.
Int J Biol Macromol ; 264(Pt 2): 130663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453104

ABSTRACT

Diabetic nephropathy (DN) is a serious complication in patients with diabetes, whose expansion process is closely related to oxidative stress caused by hyperglycemia. Herein, we report a chitosan-targeted dagliflozin-loaded melanin nanoparticle (CSMDNPs) that can selectively accumulate in injured kidneys, reduce blood glucose, and alleviate the oxidative stress-induced damage. CSMDNPs possess good dispersion and physiological stability, responsive release at acidic pH, and strong scavenging activities for various reactive oxygen and reactive nitrogen radicals. Moreover, in vitro experiments confirm that CSMDNPs have good biocompatibility, enable targeted uptake in NRK-52E renal tubular cells, and also well alleviate high glucose-induced oxidative stress. In the STZ-induced DN model, CSMDNPs exhibit high targeting distribution and retention in the damaged kidneys of DN mice according to photoacoustic imaging. At the end of CSMDNPs treatment, DN mice show a decrease in fasting blood glucose and a return to near-normal urine and blood indices. H&E, PAS, and masson pathological staining also indicates that CSMDNPs significantly inhibit the expansion of renal interstitium, glycogen, and collagen deposition, showing excellent therapeutic effects. In addition, melanin acts as both drug carrier and antioxidant without exogenous carrier introduction, exhibiting better biosafety and translational prospects.


Subject(s)
Chitosan , Diabetes Mellitus , Diabetic Nephropathies , Humans , Animals , Mice , Diabetic Nephropathies/pathology , Blood Glucose/metabolism , Melanins/metabolism , Chitosan/pharmacology , Kidney , Oxidative Stress , Diabetes Mellitus/metabolism
6.
J Agric Food Chem ; 72(12): 6744-6753, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498411

ABSTRACT

Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) have been widely used as additives in various products; however, their residues damage human health mainly via dietary ingestion. The current detection techniques remain challenging in directly and sensitively identifying TBBPA and TBBPS from food samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has great potential as an alternative tool for the analysis of low-mass environmental pollution. Herein, we successfully screened and optimized COOH-MNP-COOH as a novel MALDI matrix to enhance deprotonation for the analysis of TBBPA and TBBPS from animal-derived food samples in negative-ion mode. Notably, COOH-MNP-COOH was synthesized by a facile self-assembly strategy and characterized by TEM, FT-IR, UV-vis, and zeta potential analysis. Compared with conventional and control matrices, the COOH-MNP-COOH matrix exhibited excellent performance of TBBPA and TBBPS with high chemical stability, favorable reproducibility, remarkable salt and protein tolerance, and high sensitivity owing to abundant active groups, stronger UV-vis absorption at 355 nm, and better hydrophilicity and biocompatibility. TBBPA and TBBPS were detected with the assistance of an internal standard with limits of detection (LODs) of 300 and 200 pg/mL, respectively. Moreover, this method was applied to directly identify the residues of TBBPA and TBBPS in milk products, followed by basa catfish and meat. This research may provide a promising approach for the analysis of environmental pollutants in foodstuffs.


Subject(s)
Melanins , Nanoparticles , Polybrominated Biphenyls , Animals , Humans , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Nanoparticles/chemistry
7.
Adv Healthc Mater ; : e2303842, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38458147

ABSTRACT

Although being applied as photosensitizers for photodynamic therapy, covalent organic frameworks (COFs) fail the precise fluorescence imaging in vivo and phototherapy in deep-tissue, due to short excitation/emission wavelengths. Herein, this work proposes the first example of NIR-II emissive and benzobisthiadiazole-based COF-980. Comparing to its ligands, the structure of COF-980 can more efficiently reducing the energy gap (ΔES1-T1) between the excited state and the triplet state to enhance photodynamic therapy efficiency. Importantly, COF-980 demonstrates high photostability, good anti-diffusion property, superior reactive oxygen species (ROS) generation efficiency, promising imaging ability, and ROS production in deep tissue (≈8 mm). Surprisingly, COF-980 combined with laser irradiation could trigger larger amount of intracellular ROS to high efficiently induce cancer cell death. Notably, COF-980 NPs precisely enable PDT guided by NIR-II fluorescence imaging that effectively inhibit the 4T1 tumor growth with negligible adverse effects. This study provides a universal approach to developing long-wavelength emissive COFs and exploits its applications for biomedicine.

8.
Child Abuse Negl ; 152: 106761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531286

ABSTRACT

BACKGROUND: Self-harm seriously endangers adolescents' physical and mental health. However, the longitudinal mechanism of self-harm is not yet clear. OBJECTIVE: This study explored the inconsistent relationships between two types of emotional maltreatment and self-harm across three waves, regarding depression as a potential mediator and gender as a moderator of these associations. PARTICIPANTS AND SETTING: A sample of 588 Chinese adolescents (Mage at T1 = 12.79 years) in a middle school completed the assessment of demographic information, emotional maltreatment, depression and self-harm within one year. METHODS: Path analysis models were created to estimate the relationship of emotional maltreatment with self-harm and the mediating effect of depression. A multi-group analysis was applied to investigate the moderating effect of gender. RESULTS: There existed positive associations between emotional abuse at T1 and self-harm at T2 and T3 (ß = 0.12, SE = 0.05, p = 0.006; ß = 0.09, SE = 0.05, p = 0.054), and the mediating effect of emotional abuse at T1 on self-harm at T3 via depression at T2 was significant (Indirect effect = 0.05, SE = 0.02, 95 % CI [0.02, 0.08]). Multi-group analysis of gender revealed no significant differences in the cross-lagged pathways, but there were stronger links for girls than boys among self-harm at T1, T2, and T3 (p < 0.001). CONCLUSIONS: Emotional abuse but not emotional neglect could significantly predict self-harm. Furthermore, depression played a mediating role in the longitudinal relationship between emotional abuse and self-harm. Girls who had high levels of self-harm at a previous time point were more inclined than boys to harm themselves at a subsequent time point. These findings provide a different perspective to develop effective prevention and intervention measures.


Subject(s)
Depression , Emotional Abuse , Self-Injurious Behavior , Humans , Male , Female , Self-Injurious Behavior/psychology , Self-Injurious Behavior/epidemiology , Adolescent , Longitudinal Studies , China/epidemiology , Depression/psychology , Depression/epidemiology , Child , Emotional Abuse/psychology , Emotional Abuse/statistics & numerical data , Sex Factors , Child Abuse/psychology , Child Abuse/statistics & numerical data , East Asian People
9.
iScience ; 27(2): 108833, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38333709

ABSTRACT

Tumor extracellular vesicles (EVs) demonstrate considerable promise for medication delivery and tumor targeting owing to their natural long-term blood circulation and tissue targeting capabilities. We extracted EVs from mouse breast cancer cell 4T1 using UV stimulation and differential centrifugation. To create a new nano-drug delivery system, the vesicle delivery system (EPM) loaded with melanin and paclitaxel albumin (PA), the collected EVs were repeatedly compressed on a 200 nm porous polycarbonate membrane with melanin and PA. Our findings suggest that EPM is readily absorbed by breast cancer and dendritic cells. EPM generates significant photoacoustic signals and photothermal effects when exposed to near-infrared light and can enhance the infiltration of CD8+ T cells in mouse tumor tissues. EPM is more cytotoxic than PA in in vivo and in vitro investigations. The efficacy of EPM in clinical transformation when paired with chemotherapy/photothermal/immunotherapy treatment is demonstrated in this study.

10.
J Control Release ; 368: 1-14, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367863

ABSTRACT

Ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) is a serious kidney disease with high morbidity and mortality. However, there is no effective clinical treatment strategy. Herein, we developed a CD44 targeting nanoplatform based on HA-assembled melanin NPs covalently coupled with dexamethasone for I/R-induced AKI therapy by alleviating oxidative/inflammatory- induced damage. The constructed HA-MNP-DXM NPs had good dispersion, stability, and broad-spectrum scavenging capabilities against multiple reactive free radicals. Moreover, the NPs could be efficiently internalized and exhibited antioxidative, anti-inflammatory, and antiapoptotic effects in CoCl2-stimulated renal tubular epithelial NRK-52E cells. Furthermore, the I/R-induced AKI murine model was established to evaluate the in vivo performance of NPs. The results suggested the NPs could specifically target impaired kidneys upon intravenous administration according to NIR-II fluorescence imaging and showed high biosafety. Importantly, the NPs could improve renal function, alleviate oxidative stress and inflammatory reactions, inhibit apoptosis of tubular cells, and restore mitochondrial structure and function, exhibiting excellent therapeutic effects. Further therapeutic mechanism indicated the NPs maintained the cellular/mitochondrial redox balance by modulating the Nrf2 and HO-1 expression. Therefore, the NPs can be a promising therapeutic candidate for the treatment of I/R-induced AKI.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Mice , Animals , Melanins/metabolism , Kidney/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion , Ischemia , Apoptosis
11.
ACS Nano ; 18(9): 7123-7135, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38390866

ABSTRACT

Inflammatory bowel disease (IBD) is strongly related to the occurrence of accumulation of toxic reactive oxygen species (ROS), inflammation of the mucosa, and an imbalance of intestinal microbes. However, current treatments largely focus on a single factor, yielding unsatisfactory clinical outcomes. Herein, we report a biocompatible and IBD-targeted metabolic nanoregulator (TMNR) that synergistically regulates cellular and bacterial metabolism. The TMNR comprises a melanin-gallium complex (MNR) encapsulated within a thermosensitive and colitis-targeting hydrogel, all composed of natural and FDA-approved components. The TMNR confers superior broad-spectrum antioxidant properties, effectively scavenging reactive oxygen species (ROS) and blocking inflammatory signaling pathways. The presence of Ga3+ in TMNR selectively disrupts iron metabolism in pathogenic microorganisms due to its structural resemblance to the iron atom. Additionally, incorporating a thermosensitive injectable hydrogel enables targeted delivery of TMNR to inflammatory regions, prolonging their retention time and providing a physical barrier function for optimizing IBD treatment efficacy. Collectively, TMNR effectively modulates the redox balance of inflamed colonic epithelial tissue and disrupts iron metabolism in pathogenic microorganisms, thereby eliminating inflammation and restoring intestinal homeostasis against IBD. Hence, this work presents a comprehensive approach for precise spatiotemporal regulation of the intestinal microenvironmental metabolism for IBD treatment.


Subject(s)
Inflammatory Bowel Diseases , Humans , Reactive Oxygen Species/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammation/metabolism , Hydrogels/pharmacology , Iron
12.
Mater Today Bio ; 25: 100981, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38356961

ABSTRACT

Nanomedicines receive great attention in cancer treatment. Nevertheless, nonbiodegradable and long-term retention still limit their clinical translation. Herein, we successfully synthesize a hypoxia-triggered degradable porphyrinic covalent organic framework (HPCOF) for antitumor therapy in vivo. HPCOF possesses wide absorption in near infrared region (NIR) which endows HPCOF excellent photothermal conversion efficiency and photoacoustic (PA) imaging ability. Moreover, HPCOF exhibits excellent photodynamic and photothermal effect under special-wavelength laser irradiation. For the first time, the in vitro and in vivo tests demonstrate that HPCOF shows effective therapeutic effect for the combination of PDT and PTT under the monitoring of PA imaging. Importantly, in tumor region, HPCOF could be triggered by hypoxia microenvironment and collapsed gradually, then cleared from the body after treatment. This work fabricates a novel COF for cancer treatment and testifies great potential of HPCOF in clinical application with reducing long-term toxicity.

13.
Adv Sci (Weinh) ; 11(17): e2308905, 2024 May.
Article in English | MEDLINE | ID: mdl-38419379

ABSTRACT

The precise theranostics of rheumatoid arthritis (RA) remains a formidable challenge in clinical practice. Exploring novel applications of contemporary therapeutic approaches like chemo-radiotherapy is promising as a highly effective strategy for RA. Herein, a novel activatable nanoradiosensitizer-40 (denoted as IRnR-40) is developed, based on encapsulating the clinically approved drugs cisplatin (DDP) and indocyanine green (ICG) within a gelatin shell to achieve second near-infrared fluorescence (NIR-II FL) imaging-guided safe-dose synergetic chemo-radiotherapy. The high concentration of matrix metalloproteinase-9 (MMP-9) in the RA microenvironment plays a pivotal role in triggering the responsive degradation of IRnR-40, leading to the rapid release of functional molecules DDP and ICG. The released ICG serves the dual purpose of illuminating the inflamed joints to facilitate accurate target volume delineation for guiding radiotherapy, as well as acting as a real-time reporter for quantifying the release of DDP to monitor efficacy. Meanwhile, the released DDP achieves highly effective synergistic chemotherapy and radiosensitization for RA via the dual reactive oxygen species (ROS)-mediated mitochondrial apoptotic pathway. To sum up, this activatable nanoradiosensitizer IRnR-40 is believed to be the first attempt to achieve efficient NIR-II FL imaging-guided safe-dose chemo-radiotherapy for RA, which provides a new paradigm for precise theranostics of refractory benign diseases.


Subject(s)
Arthritis, Rheumatoid , Cisplatin , Indocyanine Green , Optical Imaging , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Animals , Indocyanine Green/administration & dosage , Mice , Optical Imaging/methods , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Disease Models, Animal , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/therapeutic use , Humans , Chemoradiotherapy/methods
14.
Adv Healthc Mater ; 13(8): e2303101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38174837

ABSTRACT

Ischemia-induced myocardial injury has become a serious threat to human health, and its treatment remains a challenge. The occurrence of ischemic events leads to a burst release of reactive oxygen species (ROS), which triggers extensive oxidative damage and leads to dysfunctional autophagy, making it difficult for cells to maintain homeostasis. Antioxidants and modulation of autophagy have thus become promising strategies for the treatment of ischemic myocardial injury. This study proposes an antioxidant-activated autophagy therapeutic regimen based on combining melanin (Mel), an excellent antioxidant with metformin mimetic ploymetformin via electrostatic interactions, to obtain a nanocomplex (Met-Mel). The nanocomplex is finally encapsulated with platelet membranes (PMN) to construct a biomimetic nanoparticle (PMN@Met-Mel) capable of targeting injured myocardium. The prepared PMN@Met-Mel has good Mel loading capacity and optimal biosafety. It exhibits excellent antioxidant activity and autophagy activation, rapidly restoring mitochondrial function. Moreover, RNA sequencing (RNA-seq) analysis reveals that PMN@Met-Mel operates mechanistically by triggering the activation of the autophagy pathway. Subsequent in vivo experiments showcase promising cardioprotective effects of these nanoparticles. These discoveries present a newly devised nanoplatform with promising potential for the effective treatment of myocardial infarction.


Subject(s)
Antioxidants , Myocardial Infarction , Humans , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Myocardium/metabolism , Oxidative Stress
15.
ACS Appl Mater Interfaces ; 16(10): 12188-12201, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38288981

ABSTRACT

Myocardial infarction (MI) is the leading cause of death worldwide. The most effective way to treat myocardial infarction is to rescue ischemic cardiomyocytes. After an ischemic event, the overproduction of reactive oxygen species (ROS) is a key driver of myocardial injury. The produced ROS affects mitochondrial function and induces apoptosis in cardiomyocytes. This was accomplished by constructing platelet-membrane-encapsulated ROS-responsive drug-releasing nanoparticles (PMN@NIC-MalNPs) to deliver malonate and niclosamide (NIC). The results revealed that PMN@NIC-MalNPs degraded and released malonate and niclosamide in a high-level ROS microenvironment, effectively reducing the oxidative stress and apoptosis rate. By enhancing basal mitochondrial oxygen consumption rate (OCR), adenosine triphosphate (ATP) production, and spare respiratory capacity (SRC) in vitro, reduced the oxidative stress levels and restored mitochondrial function. In vivo studies revealed that the PMN@NIC-MalNPs improved cardiac dysfunction, inhibited succinate dehydrogenase (SDH) activity, increased ATP production, and reduced the myocardial infarct size in myocardial infarction model mice. Further, transcriptome analysis and Western blot revealed that PMN@NIC-MalNPs prevented apoptosis by activating the expressions of the signal transducer and activator of transcription 3 (STAT3) and Bcl-2, and inhibiting the expression of Bax. Thus, this study provides a novel therapeutic solution for treating myocardial infarction and predicting the viability of an antioxidant and antiapoptotic therapeutic solution in the treatment of myocardial injury.


Subject(s)
Myocardial Infarction , STAT3 Transcription Factor , Mice , Animals , Reactive Oxygen Species/metabolism , Niclosamide/metabolism , Niclosamide/pharmacology , Niclosamide/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Adenosine Triphosphate/metabolism , Malonates/metabolism , Malonates/pharmacology , Malonates/therapeutic use , Apoptosis
16.
Clin Chim Acta ; 555: 117797, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38280490

ABSTRACT

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has attracted significant attention in clinical practice owing to its numerous advantages. However, the widespread adoption of this technique is hindered by certain limitations, such as inappropriate analyte selection, low levels of automation, and a lack of specific reference intervals and quality control programs. This review comprehensively summarizes the current challenges associated with LC-MS/MS and proposes potential resolutions. The principle of utility should guide the selection of biomarkers, prioritizing their practical value over sheer quantity. To achieve full-process automation, methodological innovation is crucial for developing high-throughput equipment. Establishing reference intervals for mass spectrometry-based assays across multiple centers and diverse populations is essential for accurate result interpretation. Additionally, the development of commercial quality control materials assumes pivotal importance in ensuring assay reliability and reproducibility. Harmonization and standardization efforts should focus on the development of reference methods and materials for the clinical use of LC-MS/MS. In the future, commercial assay kits and laboratory-developed tests (LDTs) are expected to coexist in clinical laboratories, each offering distinct advantages. The collaborative efforts of diverse professionals is vital for addressing the challenges associated with the clinical application of LC-MS/MS. The anticipated advancements include simplification, increased automation, intelligence, and the standardization of LC-MS/MS, ultimately facilitating its seamless integration into clinical routines for both technicians and clinicians.


Subject(s)
Laboratories, Clinical , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
17.
J Med Chem ; 67(3): 1861-1871, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38247270

ABSTRACT

Fluorescence and photoacoustic (PA) imaging in the second near-infrared (NIR-II, 1000-1700 nm) window has garnered massive interest owing to high maximum permissible exposure of light, reduced autofluorescence, and improved deep penetration. However, active targeted NIR-II photoacoustic/NIR-IIa fluorescence imaging of glioma under NIR-II excitation has been seldom reported, which is partly ascribable to the lack of suitable materials. In this study, a small-molecule-based αvß3-targeted NIR-II photoacoustic/NIR-IIa fluorescent probe IR-32p was generated and subsequently evaluated in U87MG tumor-bearing mice excited with NIR-I and NIR-II light. Exceptional dual-modal imaging properties such as good tumor uptake, high targeting specificity, and high tumor contrast were achieved in an orthotopic glioma model under 1020/1064 nm excitation, exhibiting a superior imaging depth of glioma through the skull. Our study introduces an outstanding dual-modal contrast agent with NIR-II absorption and confirms the superiority of NIR-II excitation over NIR-I in in vivo NIR-II/PA imaging.


Subject(s)
Glioma , Photoacoustic Techniques , Mice , Animals , Fluorescent Dyes , Photoacoustic Techniques/methods , Glioma/diagnostic imaging , Optical Imaging , Spectrum Analysis
18.
Adv Healthc Mater ; 13(11): e2303892, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219028

ABSTRACT

Stimuli-responsive nanomedicines represent a pivotal technology for in situ on-demand drug release and offer multiple advantages over conventional drug delivery systems to combat rheumatoid arthritis(RA). However, the lack of sensitivity to a single-stimuli source or the inability to synchronize multi-stimuli responses can easily lead to challenges in achieving precise-theranostics of RA. Herein, a homology-activated ultrasensitive nanomedicines MnO2-CQ4T-GOx(MCG NMs) is designed for NIR-II fluorescence(NIR-II FL)/magnetic resonance imaging(MRI)-guided effective "knock-on" dynamic anti-RA therapy. Building upon the characteristics of the RA-microenvironment, the MCG innovatively construct a MnO2-Mn2+ system, which can normalized activation sites. The ultrasensitive-responsive degradation is achieved using the multi-stimuli processes in the RA-microenvironment, triggering release of functional small molecules. The produced Mn2+ can exert Fenton-like activity to generate •OH from H2O2, thus providing the effective chemodynamic therapy(CDT). Moreover, the up-regulation of H2O2 by GOx-catalysis not only sensitizes the MnO2-Mn2+ system but also achieves self-enhancing CDT efficacy. The NIR-II FL quenching of CQ4T-BSA in the aggregated state occurs in MCG NMs, which can be rapidly and precisely "turn-on" via the MnO2-Mn2+ system. Meanwhile, the integration of activated Mn2+-based MRI imaging has successfully developed an activatable dual-modal imaging. Feedback imaging-guided precise photodynamic therapy of CQ4T-BSA can achieve efficient "knock-on" dynamic therapy for RA.


Subject(s)
Arthritis, Rheumatoid , Chlorophyllides , Magnetic Resonance Imaging , Manganese Compounds , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Magnetic Resonance Imaging/methods , Manganese Compounds/chemistry , Animals , Mice , Humans , Oxides/chemistry , Nanomedicine/methods , Hydrogen Peroxide/chemistry , Theranostic Nanomedicine/methods , Porphyrins/chemistry
19.
Aggress Behav ; 50(1): e22112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37672595

ABSTRACT

Previous research has confirmed that parental control is related to children's aggressive behavior. However, few studies have focused on proactive and reactive aggression to distinguish the different effects of parental psychological and behavioral control. Moreover, additional longitudinal evidence is needed to understand these links. In the current paper, a three-wave longitudinal study was conducted to examine the developmental characteristics of proactive and reactive aggression and the role of parental control in China. A total of 484 4th- and 7th-grade students participated at wave 1 (51.65% in 4th-grade, Mage = 11.66 ± 1.52 years), 465 students (52.04% in 4th-grade) at wave 2, and 447 children (51.90% in 4th-grade) at wave 3. The results showed that: (1) Proactive aggression in late childhood remained stable overall, while reactive aggression displayed a clear upward trend. (2) In proactive aggression, boys and girls had a consistent developmental trend. The initial level of boys was higher than that of girls. In reactive aggression, the growth rate was inversely associated with their initial level and the initial level of boys in 7th-grade was significantly higher than that of girls. (3) Both parental psychological and behavioral control positively predicted students' reactive aggression in 4th- and 7th-grade, whereas only parental behavioral control positively predicted proactive aggression in 7th-grade students, with no gender differences.


Subject(s)
Aggression , Parents , Male , Female , Humans , Child , Adolescent , Aggression/psychology , Longitudinal Studies , China
20.
Talanta ; 269: 125491, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38048679

ABSTRACT

Neurologic disorders are often accompanied by alterations in lipids and oxylipins in the brain. However, the complexity of the lipidome in the brain and its changes during brain damage caused by diabetes remain poorly understood. Herein, we developed an enhanced spatially resolved lipidomics approach with the assistance of on-tissue chemical derivatization to study lipid metabolism in the rat brain. This method enabled the spatially resolved analysis of 560 lipids and oxylipins in 19 brain microregions in coronal and sagittal sections and remarkably improved the coverage of lipidome detection. We applied this method to lipidomic studies of the diabetic rat brain and found that lipid dysregulation followed a microregion-specific pattern. Carnitines and glycerolipids were mainly elevated in the corpus callosum (midbrain) and pineal gland regions, respectively. In addition, most oxylipins, including fatty aldehydes and oxo fatty acids, were significantly upregulated in nine brain microregions. We produced a spatially resolved analysis of lipids and oxylipins, providing a novel analytical tool for brain metabolism research.


Subject(s)
Diabetes Mellitus, Type 2 , Lipidomics , Rats , Humans , Lipids/analysis , Oxylipins , Brain , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...